位置: 首页 > 研究成果 > 论文

After joining Nanjing Tech University

[2024]

(54) Chen, J.; Zhang, L.; Hae-Gu, P.; Ji-Eum, M.; Hyung-Ki, M.; Jeong-Rang, K.; Zhang, C.; Jun, K.-W.; K.-W.; Kim. Valorizing tail gas for superior hydrocarbon output in CO2-based Fischer-Tropsch synthesis. Chemical Engineering Journal 2025, 503, 158531. https://doi.org/10.1016/j.cej.2024.158531

(53) Tang Z.; Zhang, L.; Wang, L.; Gao, R.; Jun, K.-W.; Kim, S. K.; Zhang, C.; Yang Y.; Wan H.; Guan G. Carbon negative methanol production for CO2 utilization: Process design and 4E analysis. Energy 2024, 134064. https://doi.org/10.1016/j.energy.2024.134064

(52) Zhao Q.; Hu J; Gui Z.; Chang Z.; Zhang C.; Chen Y.; Huang Y.; Zhang P.; Wang F. Alanine Production from Chemical Upcycling of Polylactic Acid Waste over Fe Doped Ru/CeO2. ChemSusChem 2024, e202401727.https://doi.org/10.1002/cssc.202401727

(51) Liu, J.; Chen, X.; Wang, H.; Chen, Y.; Zhong, L.; Zhang, C.; Wang, L.; Wan, H.; Guan G. Insight into the Influence of Carbon on CoreShell Structured Co-Z@TiO2 Catalysts for FischerTropsch Synthesis. Industrial & Engineering Chemistry Research 2024, 63(38): 16285-16294. https://doi.org/10.1021/acs.iecr.4c01116

(50) Zhao, Y.; Li, X.; Zhang, C.; Zhang, L.; Gao, R. Measurement of vapor-liquid equilibrium data for binary systems CO2 + ethyl propionate, methyl propionate, ethyl acetate, and ethyl isobutyrate at 253.15 K. Journal of Chemical & Engineering Data 2024, 69(11): 3943-3951. https://pubs.acs.org/doi/10.1021/acs.jced.4c00317

(49) Deng, C.; Wang X.; Chen X.; Gao R.; Zhang L.; Zhang C.; Jun, K.-W.; Kim, S. K.; Wan H.; Guan G. ZIF-8 pyrolized N-doped carbon supported iron catalysts for enhanced CO2 hydrogenation activity to valuable hydrocarbons. Catalysis Science & Technology 2024, 14, 5304 - 5313. https://doi.org/10.1039/D4CY00810C

(48) Wang, L.; Zhang L.; Gao R.; Zhang C.; Jun, K.-W.; Kim, S. K.; Zhao T.; Wan H.; Guan G.; Jing W. Sustainable light olefins synthesis via CO2 hydrogenation: Comparative exergetic,exergoeconomic,and exergoenvironmental analyses. Journal of Environmental Chemical Engineering 2024, 12:113113. https://doi.org/10.1016/j.jece.2024.113113

(47) Zhang L.; Gao R.; Tang Z.; Zhang C.; Jun, K.-W.; Kim, S. K.; Zhao T.; Wan H.; Guan G. Boosting carbon utilization efficiency for sustainable methanol production from biomass: Techno-economic and environmental analysis. Energy Conversion and Management 2024, 311:118504. https://doi.org/10.1016/j.enconman.2024.118504

(46) Zhang L.; Tang Z.; Gao R.; Wu Y.; Wang L.; Zhang C.; Jun, K.-W.; Kim, S. K.; Zhao T.; Wan H.; Guan G. CCUS-assisted electricity-chemical polygeneration system for decarburizing coal-fired power plant: Process integration and performance assessment. Journal of Cleaner Production 2024, 141972. https://doi.org/10.1016/j.jclepro.2024.141972

(45) Gao, R.; Wang, L.; Zhang, L.; Zhang, C.; Jun, K.-W.; Kim, S. K.; Zhao, T.; Wan, H.; Guan, G. A life cycle exergy-based analysis of Power-to-liquid/Power-to-gas hybrid processes coupled with different water electrolysis technologies. Fuel 2024, 357, 130040. https://doi.org/10.1016/j.fuel.2023.130040

(44) Chen, X.; Gao, R.; Wang, Q.; Hu, K.; Wang, F.; Deng, C.; Xu, L.; Zhang, C.; Jun, K.-W.; Kim, S. K. Direct hydrogenation of CO2 to liquid hydrocarbons over K/Fe-C catalysts: Effect of porous carbon matrix and K modification. Fuel 2024, 364, 131061. https://doi.org/10.1016/j.fuel.2024.131061

(43) Li, X.; Zhang, X.; Gao, R.; Zhang, L.; Zhang, C. Vapour-liquid equilibrium data for binary systems CO2 + acetone, butanone, 2- pentanone and 3- pentanone at 253.15 K: Experimental measurements and correlations. Journal of Chemical & Engineering Data 2024, 69(4): 1621-1630.. https://doi.org/10.1021/acs.jced.3c00711

(42) Cui, Y.; He, S.; Yang, J.; Gao, R.; Hu, K.; Chen, X.; Xu, L.; Deng, C.; Lin, C.; Peng, S. Research Progress of Non-Noble Metal Catalysts for Carbon Dioxide Methanation. Molecules 2024, 29 (2), 374. https://doi.org/10.3390/molecules29020374

(41) Tang, H.; Qiu, T.; Wang, X.; Zhang, C.; Zhang, Z. A Brief Review of Recent Theoretical Advances in Fe-Based Catalysts for CO2 Hydrogenation. Molecules 2024, 29 (6), 1194. https://doi.org/10.3390/molecules29061194

[2023]

(40) Gao, R.; Wang, L.; Zhang, L.; Zhang, C.; Liu, T.; Jun, K.-W.; Kim, S. K.; Gao, Y.; Zhao, T.; Wan, H. Life cycle sustainability decision-support framework for CO2 chemical conversion technologies under uncertainties. Energy Conversion and Management 2023, 288, 117113. https://doi.org/10.1016/j.enconman.2023.117113

(39) Gao, R.; Zhang, L.; Wang, L.; Zhang, C.; Jun, K.-W.; Kim, S. K.; Zhao, T.; Wan, H.; Guan, G. Conceptual design of full carbon upcycling of CO2 into clean DME fuel: Techno-economic assessment and process optimization. Fuel 2023, 344, 128120. https://doi.org/10.1016/j.fuel.2023.128120

(38) Gao, R.; Wang, L.; Zhang, L.; Zhang, C.; Jun, K.-W.; Kim, S. K.; Zhao, T.; Wan, H.; Guan, G.; Zhu, Y. A multi-criteria sustainability assessment and decision-making framework for DME synthesis via CO2 hydrogenation. Energy 2023, 275, 127467. https://doi.org/10.1016/j.energy.2023.127467

(37) Zhang, L.; Gao, R.; Wang, L.; Zhang, C.; Jun, K.-W.; Kim, S. K.; Zhao, T.; Wan, H.; Guan, G. Carbon-neutral light olefins production for energy decarbonization: Process development and techno-econo-environmental analysis. Chemical Engineering Journal 2023, 471, 144611. https://doi.org/10.1016/j.cej.2023.144611

(36) Chen, J.; Han, S. J.; Park, H.-G.; Nasriddinov, K.; Zhang, C.; Jun, K.-W.; Kim, S. K. Benchmarking promoters of Fe/activated carbon catalyst for stable hydrogenation of CO2 to liquid hydrocarbons. Applied Catalysis B: Environmental 2023, 325, 122370. https://doi.org/10.1016/j.apcatb.2023.122370

(35) Zhang, C.; Hu, K.; Chen, X.; Xu, L.; Deng, C.; Wang, Q.; Gao, R.; Jun, K.-W.; Kim, S. K.; Zhao, T. Direct hydrogenation of CO2 into valuable aromatics over K/Fe-Cu-Al@ HZSM-5 tandem catalysts: Effects of zeolite surface acidity on aromatics formation. Fuel Processing Technology 2023, 248, 107824. https://doi.org/10.1016/j.fuproc.2023.107824

(34) Gao, R.; Zhang, L.; Wang, L.; Zhang, C.; Jun, K.-W.; Kim, S. K.; Park, H.-G.; Zhao, T.; Wan, H.; Guan, G. Efficient utilization of CO2 in power-to-liquids/power-to-gas hybrid processes: An economic-environmental assessment. Journal of CO2 Utilization 2023, 68, 102376. https://doi.org/10.1016/j.jcou.2022.102376

(33) Zhang, X.; Li, X.; Zhang, C.; Zhang, L.; Gao, R. Vapor–Liquid Equilibrium Data Measurement of CO2+ Diisopropyl Ether, CO2+ Methyl tert-Butyl Ether, and CO2+ 1, 2-Dimethoxy Ethane Binary Systems at 253.15 K. Journal of Chemical & Engineering Data 2023, 68 (12), 3338-3347. https://doi.org/10.1021/acs.jced.3c00555

(32) Xu, L.; Chen, X.; Deng, C.; Hu, K.; Gao, R.; Zhang, L.; Wang, L.; Zhang, C. Hydrogenation of Carbon Dioxide to Methanol over Non-Noble Catalysts: A State-of-the-Art Review. Atmosphere 2023, 14 (8), 1208. https://doi.org/10.3390/atmos14081208

(31) Tang, Z.; Zhang, L.; Gao, R.; Wang, L.; Li, X.; Zhang, C. Efficient Utilization of Carbon Dioxide in Power-to-Gas and Power-to-Liquid Processes: A Vital Path to Carbon Neutrality. Processes 2023, 11 (7), 1898. https://doi.org/10.3390/pr11071898

(30) Li, X.; Zhang, L.; Zhang, C.; Wang, L.; Tang, Z.; Gao, R. The Efficient Utilization of Carbon Dioxide in a Power-to-Liquid Process: An Overview. Processes 2023, 11 (7), 2089.https://doi.org/10.3390/pr11072089

(29) Deng, C.; Xu, L.; Hu, K.; Chen, X.; Gao, R.; Zhang, L.; Wang, L.; Zhang, C. Research Advances on Nitrogen-Doped Carbon Materials in COx Hydrogenation. Atmosphere 2023, 14 (10), 1510. https://doi.org/10.3390/atmos14101510

[2022]

(28) Gao, R.; Zhang, L.; Wang, L.; Zhang, X.; Zhang, C.; Jun, K.-W.; Kim, S. K.; Park, H.-G.; Gao, Y.; Zhu, Y. A comparative study on hybrid power-to-liquids/power-to-gas processes coupled with different water electrolysis technologies. Energy Conversion and Management 2022, 263, 115671.https://doi.org/10.1016/j.enconman.2022.115671

(27) Gao, R.; Zhang, L.; Wang, L.; Zhang, C.; Jun, K.-W.; Kim, S. K.; Park, H.-G.; Gao, Y.; Zhu, Y.; Wan, H. Efficient production of renewable hydrocarbon fuels using waste CO2 and green H2 by integrating Fe-based Fischer-Tropsch synthesis and olefin oligomerization. Energy 2022, 248, 123616. https://doi.org/10.1016/j.energy.2022.123616

(26) Gao, R.; Wang, L.; Zhang, L.; Zhang, C.; Jun, K.-W.; Kim, S. K.; Park, H.-G.; Zhao, T.; Gao, Y.; Zhu, Y. Upcycling of CO2 into sustainable hydrocarbon fuels via the integration of Fe-based Fischer-Tropsch synthesis and olefin oligomerization: A comparative case study. Fuel 2022, 325, 124855. https://doi.org/10.1016/j.fuel.2022.124855

(25) Seo, J.-C.; Park, G.; Arshad, M. W.; Zhang, C.; Kim, S.; Kim, S. K. Active and selective reverse water-gas shift reaction over Pt/Na-Zeolite catalysts. Journal of CO2 Utilization 2022, 66, 102291. https://doi.org/10.1016/j.jcou.2022.102291

(24) Kang, S. C.; Park, G.; Kwak, G.; Zhang, C.; Jun, K.-W.; Kim, Y. T.; Choi, M. Enhancing selectivity of aromatics in direct conversion of syngas over K/FeMn and HZSM-5 bifunctional catalysts. Molecular Catalysis 2022, 533, 112790. https://doi.org/10.1016/j.mcat.2022.112790

(23) Wang, Q.; Hu, K.; Gao, R.; Zhang, L.; Wang, L.; Zhang, C. Hydrogenation of Carbon Dioxide to Value-Added Liquid Fuels and Aromatics over Fe-Based Catalysts Based on the Fischer–Tropsch Synthesis Route. Atmosphere 2022, 13 (8), 1238. https://doi.org/10.3390/atmos13081238

[2021]

(22) Yang, Q.; Yan, M.; Zhang, L.; Xia, X.; Zhu, Y.; Zhang, C.; Zhao, B.; Ma, X.; Wang, X. Thermodynamic analysis of chemical looping coupling process for coproducing syngas and hydrogen with in situ CO2 utilization. Energy Conversion and Management 2021, 231, 113845. https://doi.org/10.1016/j.enconman.2021.113845

(21) Gao, R.; Zhang, C.; Jun, K.-W.; Kim, S. K.; Park, H.-G.; Zhao, T.; Wang, L.; Wan, H.; Guan, G. Transformation of CO2 into liquid fuels and synthetic natural gas using green hydrogen: A comparative analysis. Fuel 2021, 291, 120111. https://doi.org/10.1016/j.fuel.2020.120111

(20) Gao, R.; Zhang, C.; Jun, K.-W.; Kim, S. K.; Park, H.-G.; Zhao, T.; Wang, L.; Wan, H.; Guan, G. Green liquid fuel and synthetic natural gas production via CO2 hydrogenation combined with reverse water-gas-shift and Co-based Fischer-Tropsch synthesis. Journal of CO2 Utilization 2021, 51, 101619. https://doi.org/10.1016/j.jcou.2021.101619

[2020]

(19) Ding, J.; Guan, W.; Zhang, L.; Zhang, X.; Zhang, C.; Wang, L.; Wan, H.; Guan, G. Investigation on the Isobaric Vapor–Liquid Equilibrium for the Binary Systems of Ethyl Benzoate with Xylene Isomers and Ethylbenzene. Journal of Chemical & Engineering Data 2021, 67 (1), 192-199. https://doi.org/10.1021/acs.jced.1c00786

(18) Gao, R.; Zhang, C.; Kwak, G.; Lee, Y.-J.; Kang, S. C.; Guan, G. Techno-economic evaluation of methanol production using by-product gases from iron and steel works. Energy Conversion and Management 2020, 213, 112819. https://doi.org/10.1016/j.enconman.2020.112819

(17) Gao, R.; Zhang, C.; Lee, Y.-J.; Kwak, G.; Jun, K.-W.; Kim, S. K.; Park, H.-G.; Guan, G. Sustainable production of methanol using landfill gas via carbon dioxide reforming and hydrogenation: Process development and techno-economic analysis. Journal of Cleaner Production 2020, 272, 122552. https://doi.org/10.1016/j.jclepro.2020.122552

(16) Hwang, S.-M.; Zhang, C.; Han, S. J.; Park, H.-G.; Kim, Y. T.; Yang, S.; Jun, K.-W.; Kim, S. K. Mesoporous carbon as an effective support for Fe catalyst for CO2 hydrogenation to liquid hydrocarbons. Journal of CO2 Utilization 2020, 37, 65-73. https://doi.org/10.1016/j.jcou.2019.11.025

Before joining Nanjing Tech University

(15) Han, S. J.; Hwang, S.-M.; Park, H.-G.; Zhang, C.; Jun, K.-W.; Kim, S. K. Identification of active sites for CO2 hydrogenation in Fe catalysts by first-principles microkinetic modelling. Journal of Materials Chemistry A 2020, 8 (26), 13014-13023. https://doi.org/10.1039/D0TA01634A

(14) Zhang, C.; Kwak, G.; Park, H.-G.; Jun, K.-W.; Lee, Y.-J.; Kang, S. C.; Kim, S. Light hydrocarbons to BTEX aromatics over hierarchical HZSM-5: Effects of alkali treatment on catalytic performance. Microporous and Mesoporous Materials 2019, 276, 292-301. https://doi.org/10.1016/j.micromeso.2018.10.005

(13) Zhang, C.; Kwak, G.; Lee, Y.-J.; Jun, K.-W.; Gao, R.; Park, H.-G.; Kim, S.; Min, J.-E.; Kang, S. C.; Guan, G. Light hydrocarbons to BTEX aromatics over Zn-modified hierarchical ZSM-5 combined with enhanced catalytic activity and stability. Microporous and Mesoporous Materials 2019, 284, 316-326. https://doi.org/10.1016/j.micromeso.2019.04.041

(12) Zhang, C.; Jun, K. W.; Kwak, G.; Kim, S. Energy‐Efficient Methanol to Dimethyl Ether Processes Combined with Water‐Containing Methanol Recycling: Process Simulation and Energy Analysis. Energy Technology 2019, 7 (1), 167-176. https://doi.org/10.1002/ente.201800469

(11) Zhang, C.; Gao, R.; Jun, K.-W.; Kim, S. K.; Hwang, S.-M.; Park, H.-G.; Guan, G. Direct conversion of carbon dioxide to liquid fuels and synthetic natural gas using renewable power: Techno-economic analysis. Journal of CO2 Utilization 2019, 34, 293-302. https://doi.org/10.1016/j.jcou.2019.07.005

(10) Zhang, C.; Jun, K.-W.; Gao, R.; Kwak, G.; Park, H.-G. Efficient way of carbon dioxide utilization in a gas-to-methanol process: from fundamental research to industrial demonstration. Topics in Catalysis 2018, 61, 1794-1809. https://doi.org/10.1007/s11244-018-0993-3

(9) Lee, J.-Y.; Jun, K.-W.; Kang, S. C.; Zhang, C.; Kwak, G.; Park, J.-M.; Kim, H.-S. Fe–Co/alumina catalysts for production of high calorific synthetic natural gas: Effect of Fe/Co ratio. Journal of Industrial and Engineering Chemistry 2018, 66, 396-403. https://doi.org/10.1016/j.jiec.2018.06.006

(8) Zhang, C.; Jun, K.-W.; Gao, R.; Kwak, G.; Park, H.-G. Carbon dioxide utilization in a gas-to-methanol process combined with CO2/Steam-mixed reforming: Techno-economic analysis. Fuel 2017, 190, 303-311. https://doi.org/10.1016/j.fuel.2016.11.008

(7) Kim, S.; Kim, Y. T.; Zhang, C.; Kwak, G.; Jun, K.-W. Effect of reaction conditions on the catalytic dehydration of methanol to dimethyl ether over a K-modified HZSM-5 catalyst. Catalysis Letters 2017, 147, 792-801. https://doi.org/10.1007/s10562-017-1981-0

(6) Zhang, C.; Jun, K.-W.; Kwak, G.; Lee, Y.-J.; Park, H.-G. Efficient utilization of carbon dioxide in a gas-to-methanol process composed of CO2/steam–mixed reforming and methanol synthesis. Journal of CO2 Utilization 2016, 16, 1-7. https://doi.org/10.1016/j.jcou.2016.05.005

(5) Zhang, C.; Jun, K.-W.; Gao, R.; Kwak, G.; Kang, S. C. Efficient utilization of associated natural gas in a modular gas-to-liquids process: Technical and economic analysis. Fuel 2016, 176, 32-39. https://doi.org/10.1016/j.fuel.2016.02.060

(4) Zhang, C.; Jun, K.-W.; Gao, R.; Lee, Y.-J.; Kang, S. C. Efficient utilization of carbon dioxide in gas-to-liquids process: process simulation and techno-economic analysis. Fuel 2015, 157, 285-291. https://doi.org/10.1016/j.fuel.2015.04.051

(3) Min, J.-E.; Lee, Y.-J.; Park, H.-G.; Zhang, C.; Jun, K.-W. Carbon dioxide reforming of methane on Ni–MgO–Al2O3 catalysts prepared by sol–gel method: Effects of Mg/Al ratios. Journal of Industrial and Engineering Chemistry 2015, 26, 375-383. https://doi.org/10.1016/j.jiec.2014.12.012

(2) Zhang, C.; Jun, K.-W.; Ha, K.-S.; Lee, Y.-J.; Kang, S. C. Efficient utilization of greenhouse gases in a gas-to-liquids process combined with CO2/steam-mixed reforming and Fe-based Fischer–Tropsch synthesis. Environmental Science & Technology 2014, 48 (2), 8251-8257. https://doi.org/10.1021/es501021u

(1) Zhang, C.; Wan, H.; Xue, L.; Guan, G. Investigation on isobaric vapor liquid equilibrium for acetic acid+ water+ (n-propyl acetate or iso-butyl acetate). Fluid Phase Equilibria 2011, 305 (1), 68-75. https://doi.org/10.1016/j.fluid.2011.03.006